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Neurotransmitter Action

Understanding the mechanism of action of methamphetamine requires some
understanding of neurophysiology. Because the discussion here is brief, read-
ers who wish to further their knowledge of neurophysiology are referred to
Pinel (1997). In short, the active unit of the nervous system is the neuron
(Schwann, 1839; Cajal, 1917). A neuron is an elongated cell (up to 2 m) that
sends messages to other cells through the process of electrochemical signaling
(Sherrington, 1987; Bernstein, 1902; Adrian, 1913; Loewi, 1921; Dale, 1914).
That is, an electrical impulse, called an action potential, travels the length of
the cell to initiate the release of a chemical messenger, called a neurotrans-
mitter. The neurotransmitter substance diffuses across a gap between the
cells, called a synapse, where it is chemically bound to a protein called a
receptor. The binding of the neurotransmitter to the receptor is equivalent
to the receipt of the message.

The process of release of the neurotransmitter from the presynaptic
neuron, the neuron on the sending side of the synapse (the neuron on the
receiving side is called the postsynaptic receptor), is called exocytosis. Neu-
rotransmitter substances are generally packaged in vesicles (De Robertis et al.,
1962). These vesicles sometimes have protein units, known as transporters,
that can extract neurotransmitter substances from the cell cytoplasm, the
viscous fluid on the inside of the cell, and package them on the inside of the
vesicle. In response to an action potential, the vesicle fuses with the cell
membrane and releases neurotransmitter into the synapse (Fatt and Katz,
1952). The process of exocytosis is calcium dependent (for review, see Smith
and Augustine, 1988). That is, it occurs only in the presence of calcium.

After it has been released, the neurotransmitter diffuses across the syn-
apse and binds to a receptor on the postsynaptic membrane. The message of
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the neurotransmitter depends on the function of the receptor. Some common



        
messages are “produce an action potential,” “suppress an action potential,”
or “begin a long-term change by activating specific proteins.” As long as the
neurotransmitter substance remains in the synapse, its message will be
received by the postsynaptic neuron. Thus, a mechanism must exist to remove
the neurotransmitter. There are, in fact, several such mechanisms. One such
mechanism is through the degradation of the neurotransmitter. Another,
more important to the present discussion, is through the reuptake of the
neurotransmitter into the presynaptic neuron.

Control of Neurotransmitter Levels

In addition to degradation and reuptake, negative feedback and end-product
inhibition are two other ways that the cell has available to control the levels
of neurotransmitter released into the synapse. Some cells have autoreceptors,
which are responsible for negative feedback. That is, a receptor on the pre-
synaptic neuron (called an autoreceptor or presynaptic receptor) acts to turn
off a cell when enough neurotransmitter has accumulated in the synapse to
activate it. This mechanism prevents the cell from releasing “too much”
neurotransmitter at one time. End-product inhibition is the mechanism by
which the neuron regulates the amount of neurotransmitter that it synthe-
sizes. When enough product (neurotransmitter) is available, the product itself
deactivates the enzymes responsible for its production.

A psychoactive drug can have an effect at any or all of the above-men-
tioned processes (receptor binding, degradation, synthesis, release, packag-
ing, and reuptake). The most common site of action for a psychoactive drug
is at the postsynaptic receptor. However, psychoactive drugs can affect both
postsynaptic receptors and presynaptic receptors. Further, these drugs can
affect the mechanisms responsible for neurotransmitter synthesis, release,
packaging, reuptake, and degradation.

Physiological Effects of Amphetamine

Neurotransmitters can be classified as large or small. Large-molecule neu-
rotransmitters include the peptide transmitters such as the opiates. Small-
molecule transmitters include the monoamines and the amino acid trans-
mitters. The monoamines can be further subdivided into the catecholamines
and the indolamines. The present discussion focuses on the monoamines.
The catecholamines include the neurotransmitters norepinephrine (NE), epi-
nephrine (Epi), and dopamine (DA). The only indolamine is serotonin
(5-HT).
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Early studies hypothesized that methamphetamine inhibited the
reuptake of NE, DA (Harris and Baldessarini, 1973; Azzaro et al., 1974), and
5-HT (Taylor and Ho, 1978). More importantly, methamphetamine also acts
as a potent DA-releasing agent (Azzaro et al., 1974; Raiteri et al., 1975; Arnold
et al., 1977) and NE-releasing agent (Kuczenski and Segal, 1992). Most of
the research attempting to elucidate the mechanism of methamphetamine
action has focused on DA because the DA system, which regulates feelings
of reward, motor coordination, motivation, and hormonal release, is thought
to be primarily responsible for the behavioral changes observed in metham-
phetamine use.

DA is synthesized in the cytoplasm and transported into vesicles. From
the vesicles it is released into the synapse in both Ca2+-dependent and
-independent manners. Ca2+-dependent release is regulated by the firing of
an action potential. Ca2+-independent release is spontaneous. One major
effect of amphetamine is to cause an increase in the amount of DA released
spontaneously from the neuron (Robertson et al., 1991).

Amphetamine causes this increase in spontaneously released DA by
reversing the activity of the DA reuptake transporter (Bonisch, 1984). This
was shown by observing the activity of radioactively labeled amphetamine
applied to the terminus region of a dopaminergic neuron (Zaczek et al.,
1991). Further, amphetamine-stimulated DA release is inhibited by drugs
that block the reuptake of DA (Fischer and Cho, 1979; Raiteri et al., 1979;
Liang and Rutledge, 1982). Finally, amphetamine has no effect in genetically
engineered mice that do not have the gene that codes for the DA reuptake
transporter. Taken together, these findings lead to the exchange diffusion
model of amphetamine action. In this model, the amphetamine molecule
binds to the reuptake transporter and is taken up into the cell. The transporter
is turned around in the process and begins to pump DA out of the cell instead
of into the cell.

The weak base model is a second potential mechanism for the sponta-
neous release of DA in the presence of amphetamine. This model proposes
that at high doses amphetamine actually diffuses into the neuron where it
interacts with the vesicle (by changing its pH — thus, the name “weak base”)
and causes DA to leak into the cytoplasm of the cell, thereby providing more
cytoplasmic DA to be pumped out into the synapse via the exchange diffusion
model (Sulzer and Rayport, 1990; Sulzer et al., 1993).

Amphetamine has several other effects on the DA system as well:

1. Low concentrations of amphetamine enhance the synthesis of DA.
This is thought to occur because amphetamine causes the cell to
become DA deficient. The cell responds by producing more DA.
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2. High concentrations of amphetamine inhibit DA synthesis by binding
to presynaptic autoreceptors.

3. Amphetamine also inhibits the enzyme (monoamine oxidase) that
degrades DA.

Tolerance and Sensitization

Tolerance is defined as a diminished response to a drug after repeated admin-
istration of all effects of a drug exhibit tolerance. In the case of amphetamine,
tolerance to the anorexic, hypothermic, cardiovascular, and reinforcing
effects has been reported (Lewander, 1971; Miller and Gold, 1989, Perez-
Reyes et al., 1991). Reports from chronic amphetamine users confirm a
significant amount of tolerance to the euphoric effects of amphetamines
(Kramer et al., 1967; Grinspoon and Hedblom, 1975), which tends to result
in tremendous dose increases by chronic abusers. The physiological mecha-
nism for tolerance to amphetamine use is unclear, but seems to occur at the
cellular level.

An interesting effect of chronic amphetamine abuse is reverse tolerance,
or sensitization. That is, use of the drug leads to a stronger subjective effect
of the drug at a later time. Repeated, intermittent use or a single use seems
to lead to this phenomenon. The use of the drug amphetamine can lead to
cross-sensitization, which was originally defined as a hypersensitivity to stress
(Robinson and Becker, 1986), but has come to be associated with hypersen-
sitivity to a number of drugs as well.

Neurotoxicity

Methamphetamine neurotoxicity has been well documented in animals
(Koda and Gibb, 1973; Seiden et al., 1975; Ellison et al., 1978) but is less clear
in humans (Ernst et al., 2000). However, a recent study (Buffenstein et al.,
1997) used SPECT scanning to show brain deterioration in methamphet-
amine abusers that continued for months after abstinence (see Figure 2.1).
Methamphetamine seems to be toxic to dopaminergic neurons (Wagner et al.,
1980; Ricaurte et al., 1988; Ricaurte, Seiden, and Schuster, 1984) and serotin-
ergic neurons (Hotchkiss and Gibb, 1980; Morgan and Gibb, 1980), but not
noradrenergic, cholinergic, and GABAergic neurons (Hotchkiss et al., 1979;
Morgan and Gibb, 1980; Wagner et al., 1980). The mechanism for DA neu-
rotoxicity is better understood than the mechanism for 5HT neurotoxicity
and may involve methamphetamine triggering the release of large quanta of
DA (O’Dell et al., 1991). In fact, drugs that block DA protect against meth-
amphetamine neurotoxicity (Fuller and Hemrick-Luecke, 1980; Hotchkiss
and Gibb, 1980; Ricaurte, Seiden, and Schuster, 1984).



      
Drugs with chemical compositions similar to amphetamine and meth-
amphetamine tend also to be neurotoxic. MDMA (also known as ecstasy,
XTC, X, and E) is one such compound. MDMA has been shown to be
neurotoxic in rats (Stone et al., 1986; Schmidt, 1987), pigeons (LeSage et al.,
1993), and nonhuman primates (Ricaurte et al., 1988). The evidence for a
neurotoxic effect in humans has been much more controversial (Holland,
1999). It has been suggested that the doses of MDMA given to animals were
far higher than the doses taken by recreational users. However, when the
metabolic rates of the animals tested were taken into account, it was deter-
mined that the dosages that were neurotoxic to animals were equivalent to
the dosages used recreationally by humans (Ricaurte et al., 2000). Chronic
MDMA abuse has been shown to cause deficits in the following areas: recall
(Morgan, 1999); visual and verbal memory in low intellectually functioning
males, but not females or high intellectually functioning males (Bolla,
McCann, and Ricaurte, 1998); working memory (Wareing, Fisk, and Murphy,
2000); and complex tests of attention (McCann, 1998). The damage seems
to be related to 5-HT neuronal injury (Reneman et al., 2000).

Neuropharmacology of Amphetamines

Amphetamines are rapidly absorbed orally and have a rapid onset of action,
usually within 30 to 40 minutes of oral ingestion. Methamphetamine may
also be taken intravenously, whereupon it has an immediate effect. Certain
forms, the so-called designer amphetamines, may be inhaled. Crystal meth-
amphetamine, the smokable form of this drug, which is primarily found in
Hawaii, has an onset time of between 5 and 20 minutes, a subjective feeling
of intoxication for up to 8 hours, and a half-life of 12 to 36 hours. Demeth-
ylation, or the biochemical breakdown process caused by the presence of
methamphetamine in the body, is conclusive evidence that methamphet-
amine is being detected and not some harmless analogue.

Tolerance, the requirement of progressively higher doses over time to
obtain the same effect, occurs with all forms of amphetamines. This
phenomenon, in part, accounts for the addictive nature of methamphet-
amine. Increases in methamphetamine doses from 5 to 1000 mg per day in
a single year are not uncommon as a reflection of rapid tissue tolerance in
methamphetamine users (Trustees of Indiana University, 1995). As a result
of tolerance in long-term abusers, doses as high as 20 times the initial dose
may be needed to achieve the same high (Haight-Ashbury Training Manual,
1997). This suggests that knowledge of the behavioral indicia of intoxication,
abuse, and dependence, in addition to an understanding of the neurophar-
macology of methamphetamine, is indispensable. When compared with
other psychostimulants, such as cocaine, methamphetamine has been shown
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to be less physically addictive in animal studies (Dackis and Gold, 1990).
Nevertheless, the psychological addictive potential of methamphetamine is
extremely high; many abusers continue their use despite knowing that their
abuse is likely to cause florid psychotic symptomatology, such as command
hallucinations and disorganized cognition.

The primary effects of methamphetamine are related to the release of
catecholamine, particularly DA, from presynaptic neurons in the brain. The
drug appears to exert its greatest effect on dopaminergic neurons projecting
from the ventral tegmental area to the cerebral cortex and the limbic system,
nerve bundles commonly referred to as the “reward pathway” that is thought
to be implicated in the addictive potential of methamphetamine (Kaplan
et al., 1994).

The designer amphetamines (e.g., MDMA, MDEA, MMDA, DOM)
release DA, norepinephrine, and serotonin. As a result of their effect, indi-
viduals ingesting these substances experience both stimulant and hallucino-
genic effects. Thus, the designer amphetamines exert a broader spectrum of
effects than methamphetamine itself.
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