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Abstract
Whereas drugs are intended to be selective, at least some bind to several physiologic targets,
explaining both side effects and efficacy. As many drug-target combinations exist, it would be useful
to explore possible interactions computationally. Here, we compared 3,665 FDA-approved and
investigational drugs against hundreds of targets, defining each target by its ligands. Chemical
similarities between drugs and ligand sets predicted thousands of unanticipated associations. Thirty
were tested experimentally, including the antagonism of the β1 receptor by the transporter inhibitor
Prozac, the inhibition of the 5-HT transporter by the ion channel drug Vadilex, and antagonism of
the histamine H4 receptor by the enzyme inhibitor Rescriptor. Overall, 23 new drug-target
associations were confirmed, five of which were potent (< 100 nM). The physiological relevance of
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one such, the drug DMT on serotonergic receptors, was confirmed in a knock-out mouse. The
chemical similarity approach is systematic and comprehensive, and may suggest side-effects and
new indications for many drugs.

The creation of target-specific “magic bullets” has been a therapeutic goal since Ehrlich1 and
a pragmatic criterion in drug design for 30 years. Still, several lines of evidence suggest that
drugs may have multiple physiologic targets.2-5 Psychiatric medications, for instance,
notoriously act through multiple molecular targets and this “polypharmacology” is likely
therapeutically essential.6 Recent kinase drugs, such as Gleevec and Sutent, though perhaps
designed for specificity, modulate multiple targets and these “off-target” activities also may
be essential for efficacy.7,8 Conversely, anti-Parkinsonian drugs such as Permax and Dostinex
activate not only dopamine receptors but also 5-HT2B serotonin receptors, thereby causing
valvular heart disease and severely restricting their use.9

Predicting drug polypharmacology
Drug polypharmacology has inspired efforts to predict and characterize drug-target
associations.10-15 Several groups have used phenotypic and chemical similarities among
molecules to identify those with multiple targets,16,17 and early drug candidates are screened
against molecular target panels.18 To predict new targets for established drugs, Bork and
colleagues looked for side-effects shared between two molecules,19 while Hopkins and
colleagues linked targets by drugs that bind to more than one of them.20 Indeed, using easily
accessible associations, one can map 332 targets by the 290 drugs that bind to at least two of
them, resulting in a network with 972 connections (Figure 1a). It seemed interesting to calculate
a related map that predicts new off-target effects.

Accordingly, we used a statistics-based chemoinformatics approach to predict new off-targets
for 878 purchasable FDA-approved small-molecule drugs and 2,787 pharmaceutical
compounds. Unlike bioinformatics methods, which might use the sequence or structural
similarity among targets, this Similarity Ensemble Approach (SEA)21 compares targets by the
similarity of the ligands that bind to them, expressed as expectation values, adapting the
BLAST algorithms21-23 (other methods such as naïve Bayesian classifiers23,24 may also be
used, see Supplementary Table 1). The approach thus captures ligand-based similarities among
what would otherwise be considered disparate proteins. The 3,665 drugs were compared
against 65,241 ligands organized into 246 targets drawn from the MDL Drug Data Report
(MDDR) database,25 yielding 901,590 drug-target comparisons.

Most drugs had no significant similarities to most ligand sets. However, 6,928 pairs of drugs
and ligand sets were similar, with expectation values (E-values) better than 1×10-10. We
analyzed these predictions retrospectively against known associations and prospectively for
unreported drug polypharmacology.

Retrospective drug-target predictions
We first compared the predicted drug-target associations from the MDDR database against
reported associations with affinities better than 1 μM in a second database, the World of
Molecular Bioactivity (WOMBAT).26 For instance, the MDDR annotates Azopt
(brinzolamide) only as an “antiglaucoma agent,” but WOMBAT reports that it binds carbonic
anhydrase II at 3 nM. Correspondingly, when screened internally against all MDDR molecular
targets, SEA associated this drug with “Carbonic anhydrase inhibitors” with an E-value of
8.32×10-139. For 184 of the 746 drugs in WOMBAT, the predicted MDDR target agreed with
the annotated WOMBAT target with E-values of 1×10-10 or better, recapitulating 19% of the
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off-targets missing from the MDDR (Supplementary Table 2). Another 257 drug-target
predictions were unannotated in either database, and may suggest new polypharmacology.

A second retrospective test predicted targets for the 3,665 drugs uncharacterized in either
database but known in the literature. Of the 6,928 drug off-targets predicted, we discarded 430
as highly similar by structure to known target ligands, and another 2,666 as trivial. This left
3,832 predictions, of which we inspected 184 by literature search and by interrogating other
databases. Of these, 42 turned out to be known associations (Supplementary Table 3). For
instance, when we screened the drug Revanil (lisuride) against the MDDR ligand-target sets,
its best E-value was as an α2 adrenergic antagonist, and when we screened the drug Permax
(pergolide) it had an E-value of 8.70×10-29 as a 5-HT1D receptor agonist. Consistent with these
predictions, Revanil has been reported to bind adrenergic α2 at 0.055 nM and Permax the 5-
HT1D receptor at 13 nM (Supplementary Table 3), although neither activity was reported in
the MDDR or WOMBAT databases.

New drug-target predictions
For many of these 184 predictions we found no literature precedent. We therefore tested 30
predictions that were experimentally accessible to us. In radioligand competition binding
assays, 23 of these (77%) yielded binding constants (Ki's) less than 15 μM (lower Ki values
indicate higher affinity) (Table 1, Table 2, Supplementary Figure 1). Fifteen of these 23 were
to aminergic G-protein coupled receptors (GPCRs) (Table 1), and the remainder crossed major
receptor classification boundaries (Table 2). For instance, the α1 antagonist Doralese was
predicted and observed to bind to the dopamine D4 receptor—both α1 and D4 are aminergic
GPCRs. Conversely, the HIV-1 reverse transcriptase (enzyme) inhibitor Rescriptor was
predicted and observed to bind histamine H4; this prediction crosses major target boundaries.
For several predictions, we tested multiple receptor subtypes because the MDDR left these
unspecified; e.g., for a predicted “α1 adrenergic blocker,” we tested the drug at α1A, α1B, and
α1D subtypes; we count these as a single target. In total, 14 drugs bound 23 previously unknown
targets, with 13 having sub-micromolar and five having sub-100 nM affinities (Table 1, Table
2). In cases such as Doralese's, the affinity for the discovered off-target dopamine D4, to which
it binds with a Ki of 18 nM, was better than that for its known therapeutic targets, α1A and
α1B adrenergic receptors, for which its Ki values are 611 and 226 nM, respectively (Figure 2a).
27

How interesting and biologically relevant are these new off-targets? This can be evaluated by
the following criteria: when the new targets contribute to the primary activity of the drug, when
they may mediate drug side effects, or when they are unrelated by sequence, structure and
function to the canonical targets. Whereas not all of the newly predicted off-targets fall into
these three categories, several fall into each.

New targets as primary sites of action
The new targets can improve our understanding of drug action. N,N-dimethyltryptamine
(DMT) is an endogenous metabolite and a notorious hallucinogen. Recently the molecule was
characterized as a σ1-receptor regulator at micromolar concentrations, an association
implicated in its hallucinogenic properties.28,29 This surprised us because many drugs,
including non-hallucinogens, bind promiscuously to the σ1 receptor with higher affinity than
DMT.30 Also, DMT's hallucinogenic characteristics are consistent with other hallucinogens
thought to act through serotonergic receptors, some of which the molecule is known to bind.
31-33 We therefore screened DMT against the 1,133 WOMBAT targets. SEA predicted it to
be similar against multiple serotonergic (5-HT) ligand sets, with expectation values ranging
from 9.2×10-81 to 7.4×10-6. Upon testing, we find DMT binds 5-HT1A, 5-HT1B, 5-HT1D, 5-
HT2A, 5-HT2B, 5-HT2C, 5-HT5A, 5-HT6, and 5-HT7 receptors with affinities from 39 nM to
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2.1 μM (Supplementary Table 4, Supplementary Figure 2). Of these, three were previously
unknown (Table 1), and all had substantially greater affinities for DMT than that represented
by its 14.75 μM Kd for σ1.28 To further investigate the role of serotonin receptors in DMT-
induced hallucination, we turned to a cell-based assay and an animal model that are predictive
of hallucinatory actions.34 Consistent with SEA prediction, we find that DMT not only is a
potent partial agonist at 5-HT2A (Figure 2g) as has been reported,31 but also that it induces
head twitch response in wild type but not 5-HT2A knockout mice (Figure 2h), which is new to
this study. The EC50 of DMT at 5-HT2A is 100-fold lower (better) than that observed for σ1.
28 These observations support 5-HT2A as the primary target for DMT's hallucinogenic effects.

Similarly, the new off-targets for Sedalande, a neuroleptic and anxiolytic derived from
haloperidol, may illuminate this drug's therapeutic effects. Although used in psychiatric clinical
trials as far back as the early 1960s,35 neither its mechanism of action in the central nervous
system (CNS), nor that of the related Dimetholizine, is well understood. In addition to new
activities against α1 adrenergic receptors (1.2 nM – 240 nM, Figure 2b, Table 1), Dimetholizine
was found to bind the D2 and 5-HT1A receptors and Sedalande to bind the 5-HT1D receptor
(Table 1, Supplementary Figure 1). This likely contributes to the CNS activity of both drugs,
given the association of the former with anxiety and aggression modulation, and the activity
of many antipsychotics against the D2 receptor. We also found analogs of Sedalande that were
active against 5-HT1D, often at affinities comparable to or greater than those of Sedalande itself
(Supplementary Table 5, Supplementary Figure 3). This supports the possibility of optimizing
these drugs for new indications.

An example of a drug now being investigated for a new indication is Fabahistin. Used since
the 1950s as a symptomatic antihistamine, Fabahistin is now being investigated for Alzheimer's
disease. When screened against 1,133 WOMBAT targets, SEA found an extraordinary
similarity to 5-HT5A ligands, with an expectation value of 2.0×10-58. When we measured its
binding to the 5-HT5A receptor, Fabahistin had a Ki of 130 nM (Figure 2c, Table 1). This is
another example of a drug whose new, “off-target” affinity is much better than that for its
canonical H1 receptor target.36 Its activity against 5-HT5A and related serotonergic
receptors37 may have implications for Fabahistin's role as an Alzheimer's disease therapeutic.

Off-targets as side-effect mediators
Some of the new off-targets may contribute to a drug's adverse reactions. Motilium is an
antiemetic and dopamine D1/2 antagonist that achieves peak plasma concentrations of 2.8
μM38 on intravenous administration. This formulation was withdrawn due to adverse
cardiovascular effects, with the US FDA citing cardiac arrest, arrhythmias, and sudden death.
39 While Motilium binds the hERG channel with an IC50 of 5 μM,40 the 71 - 710 nM affinities
observed here against α1A, α1B, and α1D may also contribute to these cardiovascular effects
(Figure 2d, Table 1, Supplementary Figure 1).

Similarly, the micromolar activity against the β-adrenergic receptors of the widely used
selective serotonin reuptake inhibitor (SSRI) antidepressants Prozac and Paxil (Figure 2e,
Table 1, Supplementary Figure 1) may explain several of their adverse effects. Abrupt
withdrawal of Paxil raises standing heart rate, a symptom of the SSRI discontinuation
syndrome.41 This is counterintuitive, as relieving blockade of serotonin reuptake should reduce
synaptic serotonin, inconsistent with the cardiovascular syndrome.42 β-blockade by these
SSRIs may partially explain this effect since β-blockers induce a similar rebound tachycardia
upon abrupt withdrawal, due to β receptor up-regulation and sensitization. Despite its higher
affinity for β receptors, Prozac has a longer half-life than Paxil, and its withdrawal does not
induce SSRI discontinuation syndrome. Also, both SSRIs and many β-blockers can induce
sexual dysfunction.43 Since both serotonergic and adrenergic signaling are involved in sexual
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response, the binding of Paxil and Prozac to the β1-receptor may explain why they induce
greater dysfunction than other SSRIs.

Drug binding across major protein boundaries
Whereas many of the predicted off-targets occur among aminergic GPCRs, a target class for
which cross-activity is well-known (see below),44 four of the drugs bound to targets unrelated
by sequence or structure to their canonical targets (Table 2). For instance, the reverse
transcriptase (enzyme) inhibitor Rescriptor was predicted and shown to bind to the histamine
H4 receptor, a GPCR. These two targets share no evolutionary history, functional role, or
structural similarity whatsoever. Intriguingly, while Rescriptor's Ki for the H4 receptor is high
at 5.3 μM (Table 2, Supplementary Figure 1), this is within its steady-state plasma
concentration (Cmin averages 15 μM) and is consistent with the painful rashes associated with
Rescriptor use;45 likewise, H4 dysregulation has been associated with atopic dermatitis.46

Similarly, the vesicular monoamine transporter (VMAT) inhibitor47 Xenazine binds two
different GPCRs at sub-micromolar concentrations (Table 2, Supplementary Figure 1). Despite
its use over the last 50 years, Xenazine has not been reported to bind any GPCR. Finally, the
selective ion channel inhibitors Vadilex and RO-25-6981 were predicted and found to bind to
GPCRs and to transporters to which they were previously unknown to bind (Figure 2f, Table
2, Supplementary Figure 1). Whereas these ion channel drugs have known polypharmacology
(Figure 3), a key point is that the new targets for these four drugs are unrelated to their main
therapeutic targets except in the similarity of the ligands that modulate their activities.

More broadly, the protein target with highest sequence similarity to any of a drug's known
targets is rarely predicted by the SEA approach. Rather, the target predicted by ligand similarity
is typically well down in the sequence similarity ranking. Thus for Xenazine, the off-target
α2 adrenergic receptor is 78th most similar to the known target VMAT2 and in fact has no
significant similarity at all, with a PSI-BLAST E-value of 125 (Supplementary Table 6), while
for Rescriptor, H4 is the 167th most similar receptor to HIV-1 RT, and even for Prantal, the
aminergic δ-opioid receptor is only 26th most similar to its known muscarinic M3 target.

Certain caveats merit mention. Not all of the new off-targets predicted here would surprise
specialists. For instance, Dimetholizine has antihypertensive activity and so its affinity for
adrenergic receptors is not wholly unanticipated. Similarly, Kalgut is classified as a “selective
β1 agonist,” thought to have little activity on other adrenergic receptors.48 Whereas the
observation that it does bind to the β3 receptor goes against this classification, structurally this
seems easy to credit (Table 1, Supplementary Figure 1). Indeed, ten of the fourteen drugs
reported here are active against aminergic GPCRs (Figure 3), and so their cross-activities
against other aminergic GPCRs has some precedent.44 Finally, whereas most of the drugs were
active at their predicted off-targets, a third were not; these are examples of the false-positives
to which this method is susceptible (Supplementary Table 7). Thus, the anxiolytics Valium
and Centrax scored well against Cholecystokinin B ligands, the antipsychotic Emilace was
predicted to bind 5-HT4, the anaesthetic Duocaine the κ-opioid receptor, the antihypertensive
Doralese neurokinin receptors, and the narcotic Dromoran and the bradycardic Zatebradine
scored well against the D2 and D1 receptors. None of these bound their predicted off-targets
with affinities better than 10 μM. SEA ignores pharmacophores in its predictions, comparing
drugs to ligand sets based on all shared chemical patterns. This is at once a strength, in that it
is model-free, and a weakness, in that it may predict activity for drugs that share many features
with the ligands of a target, and yet miss a critical chemotype.

Predicting polypharmacology on a large scale
Notwithstanding these caveats, it is the model-free nature of these predictions that allows a
comprehensive exploration of drug-target interactions, most of which remain unexplored. We
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have focused on a thin slice of pharmacological targets, one dominated by aminergic drugs
(Figure 3). Stepping back to view the larger space, 364 additional off-targets for 158 drugs are
predicted with E-values better than 1×10-50, while 1,853 new off-targets are predicted with E-
values better than 1×10-10 (Figure 1b). This compares to the only 972 off-target activities
already annotated in the databases (Figure 1a). The Similarity Ensemble Approach and related
chemoinformatics methods16-20 provide tools to explore these associations systematically,
both to understand drug effects and explore new opportunities for therapeutic intervention.

Methods Summary
Prediction of off-targets

A collection of 3,665 FDA-approved and investigational drug structures was computationally
screened against a panel of over 1,400 protein targets. The drug collection was extracted from
the MDL Comprehensive Medicinal Chemistry database. Each target was represented solely
by its set of known ligands, which were extracted from three sources of annotated molecules:
the MDL Drug Data Report, the World of Molecular Bioactivity (WOMBAT),26 and the
StARlite databases. The 2D structural similarity of each drug to each target's ligand set was
quantified as an expectation value (E-value) using the Similarity Ensemble Approach (SEA).
21

Experimental testing
Predicted “off-targets” with strong SEA E-values were evaluated for novelty against
orthogonal databases and the literature. Those off-targets without precedent were subjected to
radioligand competition binding assays using standard techniques49 at the NIMH Psychoactive
Drug Screening Program. The role of 5-HT2A agonism in DMT-induced hallucination was
examined in cell-based and in knock-out mouse models.34 Derivatives of Sedalande were
identified in the ZINC50 database by substructure search, and their affinities for 5-HT1D tested
using standard techniques.49

Drug-target networks and out-group analysis
Comprehensive networks of known drug-target associations (by WOMBAT) and predicted
off-targets (by SEA) were constructed. Additionally, SEA off-target predictions were
compared to those derived from naïve Bayesian classifiers and from PSI-BLAST21-23

comparisons of a drug's known protein target(s) against the panel of potential protein targets.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
Supported by grants from the NIH supporting chemoinformatics (to B.K.S. and J.J.I.) and NIH grants and contracts
supporting drug discovery and receptor pharmacology (to B.L.R). M.J.K., J.H., and C.L. were supported by fellowships
from the National Science Foundation, the 6th FP of the European Commission, and the Max Kade Foundation,
respectively. B.L.R. was also supported by a Distinguished Investigator Award from the NARSAD and the Michael
Hooker Chair. We thank T. Oprea of Sunset Molecular for WOMBAT, Elsevier MDL for the MDDR, Scitegic for
PipelinePilot, J. Overington of the European Bioinformatics Institute (EMBL-EBI) for StARlite, Daylight Chemical
Information Systems Inc. for the Daylight toolkit, and J. Gingrich for 5-HT2A KO mice.

References
1. Ehrlich P. The Theory and Practice of Chemotherapy. Folia Serologica 1911;7:697–714.
2. Peterson RT. Chemical biology and the limits of reductionism. Nat Chem Biol 2008;4:635–638.

[PubMed: 18936741]

Keiser et al. Page 6

Nature. Author manuscript; available in PMC 2010 May 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Nobeli I, Favia AD, Thornton JM. Protein promiscuity and its implications for biotechnology. Nat
Biotechnol 2009;27:157–167. [PubMed: 19204698]

4. Marona-Lewicka D, Nichols DE. Further evidence that the delayed temporal dopaminergic effects of
LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol
Biochem Behav 2007;87:453–461. [PubMed: 17618679]

5. Marona-Lewicka D, Nichols DE. WAY 100635 produces discriminative stimulus effects in rats
mediated by dopamine D(4) receptor activation. Behav Pharmacol 2009;20:114–118. [PubMed:
19179855]

6. Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective
drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 2004;3:353–359. [PubMed:
15060530]

7. Rix U, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib
reveal novel kinase and nonkinase targets. Blood 2007;110:4055–4063. [PubMed: 17720881]

8. Hopkins AL. Network pharmacology. Nat Biotechnol 2007;25:1110–1111. [PubMed: 17921993]
9. Roth BL. Drugs and valvular heart disease. The New England journal of medicine 2007;356:6–9.

[PubMed: 17202450]
10. Bajorath J. Computational analysis of ligand relationships within target families. Curr Opin Chem

Biol 2008;12:352–358. [PubMed: 18312862]
11. Oprea TI, Tropsha A, Faulon JL, Rintoul MD. Systems chemical biology. Nat Chem Biol 2007;3:447–

450. [PubMed: 17637771]
12. Newman DJ. Natural products as leads to potential drugs: an old process or the new hope for drug

discovery? J Med Chem 2008;51:2589–2599. [PubMed: 18393402]
13. Siegel MG, Vieth M. Drugs in other drugs: a new look at drugs as fragments. Drug Discov Today

2007;12:71–79. [PubMed: 17198975]
14. Miller JR, et al. A class of selective antibacterials derived from a protein kinase inhibitor

pharmacophore. Proc Natl Acad Sci U S A 2009;106:1737–1742. [PubMed: 19164768]
15. Walsh CT, Fischbach MA. Repurposing libraries of eukaryotic protein kinase inhibitors for antibiotic

discovery. Proc Natl Acad Sci U S A 2009;106:1689–1690. [PubMed: 19193851]
16. Young DW, et al. Integrating high-content screening and ligand-target prediction to identify

mechanism of action. Nat Chem Biol 2008;4:59–68. [PubMed: 18066055]
17. Wagner BK, et al. Large-scale chemical dissection of mitochondrial function. Nat Biotechnol

2008;26:343–351. [PubMed: 18297058]
18. Krejsa CM, et al. Predicting ADME properties and side effects: the BioPrint approach. Curr Opin

Drug Discov Devel 2003;6:470–480.
19. Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P. Drug target identification using side-effect

similarity. Science 2008;321:263–266. [PubMed: 18621671]
20. Paolini GV, Shapland RHB, Hoorn WPv, Mason JS, Hopkins AL. Global mapping of pharmacological

space. Nat Biotechnol 2006;24:805–815. [PubMed: 16841068]
21. Keiser MJ, et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007;25:197–

206. [PubMed: 17287757]
22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol

Biol 1990;215:403–410. [PubMed: 2231712]
23. Hert J, Keiser MJ, Irwin JJ, Oprea TI, Shoichet BK. Quantifying the relationships among drug classes.

J Chem Inf Model 2008;48:755–765. [PubMed: 18335977]
24. Nigsch F, Bender A, Jenkins JL, Mitchell JB. Ligand-target prediction using Winnow and naive

Bayesian algorithms and the implications of overall performance statistics. J Chem Inf Model
2008;48:2313–2325. [PubMed: 19055411]

25. Schuffenhauer A, et al. An ontology for pharmaceutical ligands and its application for in silico
screening and library design. J Chem Inf Comput Sci 2002;42:947–955. [PubMed: 12132896]

26. Oprea, TI. Chemoinformatics in drug discovery. Wiley-VCH; 2005.
27. Lomasney JW, et al. Molecular cloning and expression of the cDNA for the alpha 1A-adrenergic

receptor. The gene for which is located on human chromosome 5. J Biol Chem 1991;266:6365–6369.
[PubMed: 1706716]

Keiser et al. Page 7

Nature. Author manuscript; available in PMC 2010 May 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



28. Fontanilla D, et al. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1
receptor regulator. Science 2009;323:934–937. [PubMed: 19213917]

29. Su TP, Hayashi T, Vaupel DB. When the endogenous hallucinogenic trace amine N,N-
dimethyltryptamine meets the sigma-1 receptor. Sci Signal 2009;2:pe12. [PubMed: 19278957]

30. Roth BL, Kroeze WK, Patel S, Lopez E. The Multiplicity of Serotonin Receptors: Uselessly diverse
molecules or an embarrasment of riches? The Neuroscientist 2000;6:252–262.

31. Smith RL, Canton H, Barrett RJ, Sanders-Bush E. Agonist properties of N,N-dimethyltryptamine at
serotonin 5-HT2A and 5-HT2C receptors. Pharmacol Biochem Behav 1998;61:323–330. [PubMed:
9768567]

32. Kohen R, et al. Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin
receptor. J Neurochem 1996;66:47–56. [PubMed: 8522988]

33. Pierce PA, Peroutka SJ. Hallucinogenic drug interactions with neurotransmitter receptor binding sites
in human cortex. Psychopharmacology (Berl) 1989;97:118–122. [PubMed: 2540505]

34. Abbas AI, et al. PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at
serotonin receptors. J Neurosci 2009;29:7124–7136. [PubMed: 19494135]

35. Kurland AA, Mc CK, Michaux WW. Clinical trial of haloanisone (R-2028) with hospitalized
psychiatric patients. J New Drugs 1962;2:352–360. [PubMed: 13927502]

36. Gankina EM, et al. Effect of some antihistamine preparations on binding of3H-mepyramine and3H-
cimetidine to histamine receptors in rat brain. Khimiko-farmatsevticheskii Zhurnal 1992;26:9–11.

37. Gankina EM, et al. The effect of antihistaminic preparations on the binding of labelled mepyramine,
ketanserin and quinuclidinyl benzilate in the rat brain. Eksp Klin Farmakol 1993;56:22–24. [PubMed:
8100727]

38. Heykants J, et al. On the pharmacokinetics of domperidone in animals and man. IV. The
pharmacokinetics of intravenous domperidone and its bioavailability in man following intramuscular,
oral and rectal administration. Eur J Drug Metab Pharmacokinet 1981;6:61–70. [PubMed: 7250152]

39. FDA Warns Against Women Using Unapproved Drug, Domperidone, to Increase Milk Production.
US Food and Drug Administration Talk Paper. 2004

40. Stork D, et al. State dependent dissociation of HERG channel inhibitors. Br J Pharmacol
2007;151:1368–1376. [PubMed: 17592502]

41. Michelson D, et al. Interruption of selective serotonin reuptake inhibitor treatment. Double-blind,
placebo-controlled trial. Br J Psychiatry 2000;176:363–368. [PubMed: 10827885]

42. Berger M, Gray JA, Roth BL. The Extended Pharmacology of Serotonin. Annual Reviews in Medicine
2009;60:355–366.

43. Waldinger MD, Hengeveld MW, Zwinderman AH, Olivier B. Effect of SSRI antidepressants on
ejaculation: a double-blind, randomized, placebo-controlled study with fluoxetine, fluvoxamine,
paroxetine, and sertraline. J Clin Psychopharmacol 1998;18:274–281. [PubMed: 9690692]

44. Peters JU, Schnider P, Mattei P, Kansy M. Pharmacological promiscuity: dependence on compound
properties and target specificity in a set of recent Roche compounds. ChemMedChem 2009;4:680–
686. [PubMed: 19266525]

45. Scott LJ, Perry CM. Delavirdine: a review of its use in HIV infection. Drugs 2000;60:1411–1444.
[PubMed: 11152019]

46. Dijkstra D, et al. Human inflammatory dendritic epidermal cells express a functional histamine H4
receptor. J Invest Dermatol 2008;128:1696–1703. [PubMed: 18239617]

47. Mehvar R, Jamali F, Watson MW, Skelton D. Pharmacokinetics of tetrabenazine and its major
metabolite in man and rat. Bioavailability and dose dependency studies. Drug Metab Dispos
1987;15:250–255. [PubMed: 2882986]

48. Inamasu M, Totsuka T, Ikeo T, Nagao T, Takeyama S. Beta 1-adrenergic selectivity of the new
cardiotonic agent denopamine in its stimulating effects on adenylate cyclase. Biochem Pharmacol
1987;36:1947–1954. [PubMed: 3036156]

49. Jensen NH, et al. N-desalkylquetiapine, a potent norepinephrine reuptake inhibitor and partial 5-
HT1A agonist, as a putative mediator of quetiapine's antidepressant activity.
Neuropsychopharmacology 2008;33:2303–2312. [PubMed: 18059438]

Keiser et al. Page 8

Nature. Author manuscript; available in PMC 2010 May 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



50. Irwin JJ, Shoichet BK. ZINC--a free database of commercially available compounds for virtual
screening. J Chem Inf Model 2005;45:177–182. [PubMed: 15667143]

Keiser et al. Page 9

Nature. Author manuscript; available in PMC 2010 May 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Drug-target networks, before and after predicting off-targets
(A) Known drug-target network. Each drug (gold) is linked to its known protein targets (cyan)
by a gray edge. Each edge denotes a Ki of 1 μM or better for that drug to its target. (B) Predicted
drug-target network. Drugs and proteins are linked as per the known drug-target network in
(A), but with the addition of red edges representing SEA off-target predictions with E-values
≤ 10-10.
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Figure 2. Testing new off-target activities
(A-F) Radioligand competition binding assays: (A) Doralese at D4, (B) Sedalande and
Dimetholizine at α1D, (C) Fabahistin at 5-HT5A, (D) Motilium at α1A, (E) Prozac at β1, and
(F) Vadilex at the serotonin transporter. (G-H) Investigating 5-HT2A as the target of DMT-
induced hallucination: (G) 5-HT2A-mediated Ca2+ response was measured after treating HEK
293 cells stably expressing the human 5-HT2A receptor with DMT or 5-HT. DMT's EC50 was
found to be 118±29 nM (vs. 5-HT's 6.6±0.4 nM baseline, n = 3), with an Emax of 23±0.4% (n
= 3), confirming that DMT is a potent partial agonist at 5-HT2A receptors. (H) DMT elicited
head twitch behavior only in 5-HT2A wild-type mice, confirming that it is a hallucinogenic 5-
HT2A agonist. **, p < .01.
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Figure 3. Discovered off-targets network
Bipartite network where drugs (gold) are linked by gray edges to their known targets (violet)
and by red arrows to their discovered off-targets (cyan). Gray edges denote binding at 1 μM
or better, where these affinities are known. Node sizes increase with number of incident edges.
Target abbreviations: 5-HTx, serotonin receptor type x; 5-HTT, serotonin transporter; β1+,
β1 adrenergic agonist; β1-, β1 adrenergic antagonist; β3+, β3 adrenergic agonist; σ1, σ1-
receptor; CA, carbonic anhydrase; DAT, dopamine transporter; HIV1RT, HIV-1 reverse
transcriptase; hERG, human Ether-a-go-go Related Gene channel; K+, Potassium channel;
NET, norepinephrine transporter; NMDA, N-methyl-D-aspartate receptor; VMAT2, vesicular
monoamine transporter 2.
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